DSO 1202B

631,00 

99 skladem

Hantek DSO 1202B (200 MHz) is a digital oscilloscope suitable for use in harsh industrial environments, but also for work in the field.

Compare
SKU: HTHH1202B Categories: ,

Hantek DSO 1202B (200 MHz) Digital Handheld Oscilloscope

Impressive design, intuitive control and high-resistance finish make oscilloscopes in the 1000B series useful aiders not only in field work, but also in hard industrial conditions. All Hantek oscilloscopes offer a great price/performance ratio at the low-end segment of measuring technology and the DSO 1202B is no exception. The advantages of Hantek Handheld over its rival products are the more than five times larger sampling memory, very good interference resistance, more accurate mulitmeter offering a larger number of ranges, a higher quality color display with a longer diagonal 5.6“ (14.5 cm), intuitive control and a long lasting battery (6 hours for a single recharge).

The device will meet the needs of measuring technology professionals, but also those of technical secondary school and college students as a multifunction aid for study. Its low price and quality technical design offer a high use value.

Its main features are the 200 MHz bandwidth and 1 GS/s (one-channel) maximum sampling rate. The other advantages of the Hantek DSO 1202B oscilloscope are its weight and compact size, which make it easily portable.

DSO 1202B – main features:

• Bandwidth: 200 MHz
• Rise Time: 1.8ns
• Sampling rate: 1GS/s
• Record Length: 1M
• Zoom function
• Multimeter function
• 32 automatic measurements
• Measuring cursors
• Quick offset calibration
• Math functions including FFT
• Advanced trigger modes: Edge, Video, Pulse, Slope, Over time, Alternative
• Measurement record storage (supports bitmap and CSV format)
• Screen storage
• LabVIEW support
• Applications development support – Visual C, Visual Basic
• 5.6“ display with LED illumination; 640×480 point resolution
• USB Host: support removeable disk
• LAN: Optional
• Dimensions (mm): 240(L) x 165(W) x 50(H)

Multimeter parameters:

• Number of digits: 6000
• Measurement modes: U, I, R, f, diod test, continutity test
• Max. input voltage – AC: 600 V DC: 800 V
• Max. input current – AC: 10A DC: 10A
• True-RMS multimeter
• Input impedance: 10 M
• Isolated input: up to 1000 V
• Safety class: 1000 V CAT II and 600 V CAT III

Control Programme

The programme, which uses a pop-up menu, is user-friendly and easy to control. It is localized in English and includes a built-in help system. It features a whole range of standard functions frequently met with.

Favorable price – optimal performance

An obstacle for anyone interested in owning a good oscilloscope is the purchasing price of a digital oscilloscope. Quality oscilloscopes are expensive. Hantek brings an alternative and offers a balanced price/performance ratio. Measuring technology development and production are marching in seven-league boots, and everybody understands that computer technology prices have fallen sharply in the last decade. Measuring technology is no exception. Hantek offers a cheap and good quality solution, although not a perfect one. Hantek oscilloscopes are accessible to anyone interested in making the relevant measurements.

The DSO 1000B and 1000BV Oscilloscope Product Series

The DSO 1202B model is based on the Hantek 1000B Series. The Oscilloscopes from this series have common features: 2 channels, maximum sampling frequency 1GS/s, AC/DC/GND coupling, 3% DC amplification accuracy, integrated multimeter, vertical resolution 8-bit. Product 1000BV Series compared to the series 1000B is extended only by 2G SD memory and preinstalled program module help videos. The most important technical parameters shall remain identical for oscilloscopes.

Package contents
Package includes:
1x Handheld DSO 1202B
2x Passive probe 200 MHz
1x Test probes for multimeter
1x Connecting cable 1,2m; USB 2.0
1x Power adapter
1x High quality nylon bag – Hantek
1x CD with software and Manual in English

Další informace

Hmotnost 1 kg
Warranty

Model

Parameters

<h3>Horizontal</h3>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Sample Rate Range
</td>
<td colspan="2">
1GS/s
</td>
</tr>
<tr>
<td width="19%">
Waveform Interpolation
</td>
<td colspan="2">
(sin x)/x
</td>
</tr>
<tr>
<td width="19%">
Record Length
</td>
<td colspan="2">
Maximum1Msamples per single-channel; maximum 512K  samples per dual-channel (4K,16K,40K optional)
</td>
</tr>
<tr>
<td rowspan="2" width="19%">
TIME/DIV Range
</td>
</tr>
<tr>
<td width="49%">
2ns/div to 40s/div, in a  2, 4, 8 sequence<strong></strong>
</td>
</tr>
<tr>
<td width="19%">
Sample Rate and
Delay Time Accuracy
</td>
<td colspan="2">
±50ppm over any ≥1ms time interval
</td>
</tr>
<tr>
<td rowspan="3" width="19%">
<p align="left">Delta Time Measurement Accuracy
(Full Bandwidth)
</td>
<td colspan="2">
Single-shot, Normal mode
± (1 sample interval +100ppm × reading + 0.6ns)
</td>
</tr>
<tr>
<td colspan="2">
>16 averages
± (1 sample interval + 100ppm × reading + 0.4ns)
</td>
</tr>
<tr>
<td colspan="2">
Sample interval = s/div ÷ 200
</td>
</tr>
<tr>
<td rowspan="6" width="19%">
Position Range
</td>
</tr>
<tr>
</tr>
<tr>
<td width="49%">
2ns/div to 10ns/div
</td>
<td width="32%">
(-4div × s/div) to 20ms
</td>
</tr>
</tbody>
</table>
<br />
<h3>Vertical</h3>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
A/D Converter
</td>
<td colspan="3" width="81%">
8-bit resolution,
each channel sampled simultaneously
</td>
</tr>
<tr>
<td width="19%">
VOLTS Range
</td>
<td colspan="3" width="81%">
2mV/div to 5V/div at input BNC
</td>
</tr>
<tr>
<td width="19%">
Position Range
</td>
<td colspan="3" width="81%">
2mV/div to 200mV/div, ±2V
>200mV/div to 5V/div, ±50V
</td>
</tr>
<tr>
<td width="19%">
Analog Bandwidth in
Normal and Average
modes at BNC or with probe, DC Coupled
</td>
<td colspan="3" width="81%">
2mV/div to 20mV/div, ±400mV
50mV/div to 200mV/div, ±2V
500mV/div to 2V/div, ±40V
5V/div, ±50V
</td>
</tr>
<tr>
<td width="19%">
Selectable Analog Bandwidth Limit, typical
</td>
<td colspan="3" width="81%">
20MHz
</td>
</tr>
<tr>
<td width="19%">
Low Frequency Response (-3db)
</td>
<td colspan="3" width="81%">
≤10Hz at BNC
</td>
</tr>
<tr>
<td rowspan="2" width="19%">
Rise Time at BNC, typical
</td>
</tr>
<tr>
<td width="81%">
<1.8ns
</td>
</tr>
<tr>
<td width="19%">
DC Gain Accuracy
</td>
<td colspan="3" width="81%">
±3% for Normal or Average acquisition mode, 5V/div to 10mV/div
±4% for Normal or Average acquisition mode, 5mV/div to 2mV/div
</td>
</tr>
<tr>
<td rowspan="2" width="19%">
DC Measurement Accuracy,
Average Acquisition Mode
</td>
<td colspan="3" width="81%">
Measurement Type: Average of ≥16 waveforms with vertical position at zero
Accuracy: ± (3% × reading + 0.1div + 1mV) when 10mV/div or greater is selected
</td>
</tr>
<tr>
<td colspan="3" width="81%">
Measurement Type: Average of ≥16 waveforms with vertical position not at zero
Accuracy: ± [3% × (reading + vertical position) + 1% of vertical position + 0.2div]
Add 2mV for settings from 2mV/div to 200mV/div; add 50mV for settings from 200mV/div to 5V/div
</td>
</tr>
<tr>
<td width="19%">
Volts Measurement Repeatability,
Average Acquisition Mode
</td>
<td colspan="3" width="81%">
Delta volts between any two averages of ≥16 waveforms acquired under same setup and ambient conditions
</td>
</tr>
</tbody>
</table>
<strong><em> Note: Bandwidth reduced to 6MHz when using a 1X probe.</em></strong>
<br />
<h3>Trigger</h3>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td rowspan="6" width="19%">
Trigger Sensitivity
(Edge Trigger Type)
</td>
<td width="20%">
Coupling
</td>
<td colspan="3">
Sensitivity
</td>
</tr>
<tr>
<td rowspan="2" width="20%">
DC
</td>
<td width="14%">
Source
</td>
</tr>
<tr>
<td width="14%">
CH1
CH2
 
</td>
<td width="47%">
<p align="left">1.5div from 10MHz to 100MHz;
<p align="left">2div from 100MHz to Full<strong></strong>
</td>
</tr>
<tr>
<td width="20%">
AC
</td>
<td colspan="3">
Attenuates signals below 10Hz
</td>
</tr>
<tr>
<td width="20%">
HF Reject
</td>
<td colspan="3">
Attenuates signals above 80kHz
</td>
</tr>
<tr>
<td width="20%">
LF Reject
</td>
<td colspan="3">
Same as the DC-coupled limits for frequencies above 150kHz; attenuates signals below 150kHz
</td>
</tr>
<tr>
<td rowspan="2" width="19%">
Trigger Level Range
</td>
<td width="20%">
Source
</td>
<td colspan="3">
Range
</td>
</tr>
<tr>
<td width="20%">
CH1, CH2
</td>
<td colspan="3">
±8 divisions from center of screen
</td>
</tr>
<tr>
<td rowspan="2" width="19%">
<p align="left">Trigger Level Accuracy, typical (Accuracy is for signals having rise and fall times ≥20ns)
</td>
<td width="20%">
Source
</td>
<td colspan="3">
Accuracy
</td>
</tr>
<tr>
<td width="20%">
CH1、CH2
</td>
<td colspan="3">
0.2div × volts/div within ±4 divisions from center of screen
</td>
</tr>
<tr>
<td width="19%">
<p align="left">Set Level to 50%, typical
</td>
<td colspan="4">
Operates with input signals ≥50Hz
</td>
</tr>
</tbody>
</table>
<strong><em>Note: Bandwidth reduced to 6MHz when using a 1X probe.</em></strong>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Video Trigger Type
</td>
<td width="20%">
Source
</td>
<td width="61%">
Range
</td>
</tr>
<tr>
<td width="19%"> 

</td>
<td width="20%">
CH1, CH2
</td>
<td width="61%">
<p align="left">Peak-to-peak amplitude of 2 divisions
</td>
</tr>
<tr>
<td width="19%">
Signal Formats and Field Rates, Video Trigger Type
</td>
<td width="20%">
Supports NTSC, PAL and SECAM broadcast systems for any field or any line
</td>
<td width="61%"> 

</td>
</tr>
<tr>
<td width="19%">
Holdoff Range
</td>
<td width="20%">
100ns to 10s
</td>
<td width="61%"> 

</td>
</tr>
</tbody>
</table>
 
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Pulse Width Trigger
</td>
<td width="81%"> 

</td>
</tr>
<tr>
<td width="19%">
<p align="left">Pulse Width Trigger Mode
</td>
<td width="81%">
Trigger when < (Less than), > (Greater than), = (Equal), or ≠ (Not Equal); Positive pulse or Negative pulse
</td>
</tr>
<tr>
<td width="19%">
<p align="left">Pulse Width Trigger Point
</td>
<td width="81%">
Equal: The oscilloscope triggers when the trailing edge of the pulse crosses the trigger level.
Not Equal: If the pulse is narrower than the specified width, the trigger point is the trailing edge. Otherwise, the oscilloscope triggers when a pulse continues longer than the time specified as the Pulse Width.
Less than: The trigger point is the trailing edge.
Greater than (also called overtime trigger): The oscilloscope triggers when a pulse continues longer than the time specified as the Pulse Width.
</td>
</tr>
</tbody>
</table>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Pulse Width Range
</td>
<td width="81%">
Selectable from 20ns to 10s
</td>
</tr>
</tbody>
</table>
 
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Slope Trigger
</td>
<td width="81%"> 

</td>
</tr>
<tr>
<td width="19%">
Slope Trigger Mode
</td>
<td width="81%">
Trigger when < (Less than), > (Greater than), = (Equal), or ≠ (Not Equal); Positive slope or Negative slope
</td>
</tr>
<tr>
<td width="19%">
Slope Trigger Point
</td>
<td width="81%">
Equal: The oscilloscope triggers when the waveform slope is equal to the set slope.
Not Equal: The oscilloscope triggers when the waveform slope is not equal to the set slope.
Less than: The oscilloscope triggers when the waveform slope is less than the set slope.
Greater than: The oscilloscope triggers when the waveform slope is greater than the set slope.
</td>
</tr>
<tr>
<td width="19%">
Time Range
</td>
<td width="81%">
Selectable from 20ns to 10s
</td>
</tr>
<tr>
<td width="19%">
Overtime Trigger
</td>
<td width="81%">
The leading edge: Rising edge or Falling edge; Time Setting: 20-10s
</td>
</tr>
</tbody>
</table>
 
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Swap Trigger
</td>
<td width="81%"> 

</td>
</tr>
<tr>
<td width="19%">
CH1
</td>
<td width="81%">
Internal Trigger: Edge, Pulse Width, Video, Slope
</td>
</tr>
<tr>
<td width="19%">
CH2
</td>
<td width="81%">
Internal Trigger: Edge, Pulse Width, Video, Slope
</td>
</tr>
</tbody>
</table>
 
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
<p align="left">Trigger Frequency Counter
</td>
<td width="81%"> 

</td>
</tr>
<tr>
<td width="19%">
Readout Resolution
</td>
<td width="81%">
6 digits
</td>
</tr>
<tr>
<td width="19%">
Accuracy (typical)
</td>
<td width="81%">
±30ppm (including all frequency reference errors and ±1 count errors)
</td>
</tr>
<tr>
<td width="19%">
Frequency Range
</td>
<td width="81%">
AC coupled, from 4Hz minimum to rated bandwidth
</td>
</tr>
<tr>
<td width="19%">
Signal Source
</td>
<td width="81%">
Pulse Width or Edge Trigger modes: all available trigger sources
The Frequency Counter measures trigger source at all times, including when the oscilloscope acquisition pauses due to changes in the run status, or acquisition of a single shot event has completed.
Pulse Width Trigger mode: The oscilloscope counts pulses of significant magnitude inside the 1s measurement window that qualify as triggerable events, such as narrow pulses in a PWM pulse train if set to < mode and the width is set to a relatively small time.
Edge Trigger mode: The oscilloscope counts all edges of sufficient magnitude and correct polarity.
Video Trigger mode: The Frequency Counter does not work.
</td>
</tr>
</tbody>
</table>
<br />
<h3>Acquisition</h3>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Acquisition Modes
</td>
<td colspan="2">
Normal, Peak Detect, and Average
</td>
</tr>
<tr>
<td width="19%">
<p align="left">Acquisition Rate, typical
</td>
<td colspan="2">
Up to 2000 waveforms per second per channel (Normal acquisition mode, no measurement)
</td>
</tr>
<tr>
<td width="19%">
Single Sequence
</td>
<td width="19%">
Acquisition Mode
</td>
<td width="62%">
Acquisition Stop Time
</td>
</tr>
<tr>
<td width="19%"> 

</td>
<td width="19%">
Normal, Peak Detect
</td>
<td width="62%">
<p align="left">Upon single acquisition on all channels
<p align="left">simultaneously
</td>
</tr>
<tr>
<td width="19%"> 

</td>
<td width="19%">
Average
</td>
<td width="62%">
After N acquisitions on all channels simultaneously, N can be set to 4, 8, 16, 32, 64 or 128
</td>
</tr>
</tbody>
</table>
<br />
<h3>Inputs</h3>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Inputs
</td>
<td colspan="2"> 

</td>
</tr>
<tr>
<td width="19%">
Input Coupling
</td>
<td colspan="2">
DC, AC or GND
</td>
</tr>
<tr>
<td width="19%">
<p align="left">Input Impedance, DC coupled
</td>
<td colspan="2">
1MΩ±2% in parallel with 20pF±3pF
</td>
</tr>
<tr>
<td width="19%">
Probe Attenuation
</td>
<td colspan="2">
1X, 10X
</td>
</tr>
<tr>
<td width="19%">
<p align="left">Supported Probe Attenuation Factors
</td>
<td colspan="2">
1X, 10X, 100X, 1000X
</td>
</tr>
<tr>
<td rowspan="4" width="19%">
<p align="left">Maximum Input Voltage
</td>
<td width="19%">
Overvoltage Category
</td>
<td width="62%">
Maximum Voltage
</td>
</tr>
<tr>
<td width="19%">
CAT I and CAT II
</td>
<td width="62%">
300V<sub>RMS </sub>(10×), Installation Category
</td>
</tr>
<tr>
<td width="19%">
CAT III
</td>
<td width="62%">
150V<sub>RMS </sub>(1×)
</td>
</tr>
<tr>
<td colspan="2">
Installation Category II: derate at 20dB/decade above 100kHz to 13V peak AC at 3MHz* and above. For non-sinusoidal waveforms, peak value must be less than 450V. Excursion above 300V should be of less than 100ms duration. RMS signal level including all DC components removed through AC coupling must be limited to 300V. If these values are exceeded, damage to the oscilloscope may occur.
</td>
</tr>
</tbody>
</table>
<br />
<h3>Measurements</h3>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td width="19%">
Cursors
</td>
<td width="81%">
Voltage difference between cursors: △V
Time difference between cursors: △T
Reciprocal of △T in Hertz (1/ΔT)
</td>
</tr>
<tr>
<td width="19%">
Automatic Measurements
</td>
<td width="81%">
Frequency, Period, Mean, Peak-to-peak, Cycle RMS, Minimum, Maximum, Rise Time, Fall Time, Positive Width, Negative Width
</td>
</tr>
</tbody>
</table>
<h3>General Specifications</h3>
<table style="width: 100%;" border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td colspan="3">
Display
</td>
</tr>
<tr>
<td width="19%">
Display Type
</td>
<td colspan="2">
5.6 Inch width TFT Display
</td>
</tr>
<tr>
<td width="19%">
Display Resolution
</td>
<td colspan="2">
480 (Vertical) X 640(Horizontal) pixels
</td>
</tr>
<tr>
<td width="19%">
Display Contrast
</td>
<td colspan="2">
Adjustable (16 gears) with the progress bar
</td>
</tr>
<tr>
<td colspan="3">
Probe Compensator Output
</td>
</tr>
<tr>
<td width="19%">
<p align="left">Output Voltage, typical
</td>
<td colspan="2">
About 5Vpp into ≥1MΩ load
</td>
</tr>
<tr>
<td width="19%">
Frequency, typical
</td>
<td colspan="2">
1kHz
</td>
</tr>
<tr>
<td colspan="3">
Power Supply
</td>
</tr>
<tr>
<td width="19%">
Switching Adatper
</td>
<td colspan="2">
AC Input:100-240VAC<sub>RMS</sub>,0.6AMAX,50Hz-60Hz; DC Output:9V,2A
</td>
</tr>
<tr>
<td width="19%">
DC Input
</td>
<td colspan="2">
DC8.5-15V,2A
</td>
</tr>
<tr>
<td width="19%">
Power Consumption
</td>
<td colspan="2">
<30W
</td>
</tr>
<tr>
<td colspan="3">
Environmental
</td>
</tr>
<tr>
<td rowspan="2" width="19%">
Temperature
</td>
<td colspan="2">
Operating:32℉to122℉(0℃to50℃)
</td>
</tr>
<tr>
<td colspan="2">
Nonoperating:-40℉to159.8℉(-40℃to +71℃)
</td>
</tr>
<tr>
<td width="19%">
Cooling Method
</td>
<td colspan="2">
Convection
</td>
</tr>
<tr>
<td rowspan="2" width="19%">
Humidity
</td>
<td colspan="2">
+104℉or below (+40℃or below): ≤90% relative humidity
</td>
</tr>
<tr>
<td colspan="2">
106℉to122℉(+41℃to50℃): ≤60% relative humidity
</td>
</tr>
<tr>
<td width="19%">
Altitude
</td>
<td width="19%">
Operating and Nonoperating
</td>
<td width="62%">
3,000m(10,000 feet)
</td>
</tr>
<tr>
<td width="19%"> 

</td>
<td width="19%">
Random Vibration
</td>
<td width="62%">
0.31g<sub>RMS</sub> from 50Hz to 500Hz, 10 minutes on each axis
</td>
</tr>
<tr>
<td width="19%"> 

</td>
<td width="19%">
Nonoperating
</td>
<td width="62%">
2.46g<sub>RMS</sub> from 5Hz to 500Hz, 10 minutes on each axis
</td>
</tr>
<tr>
<td width="19%">
Mechanical Shock
</td>
<td width="19%">
Operating
</td>
<td width="62%">
50g, 11ms, half sine
</td>
</tr>
<tr>
<td colspan="3">
Mechanical
</td>
</tr>
<tr>
<td rowspan="3" width="19%">
Size
</td>
<td width="19%">
Length
</td>
<td width="62%">
245mm
</td>
</tr>
<tr>
<td width="19%">
Height
</td>
<td width="62%">
163mm
</td>
</tr>
<tr>
<td width="19%">
Depth
</td>
<td width="62%">
52mm
</td>
</tr>
<tr>
<td width="19%">
Weight
</td>
<td width="19%">
<p align="left">
</td>
<td width="62%">
1.2 Kg
</td>
</tr>
</tbody>
</table>
<br />
<h3>Meter Mode</h3>
<table border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td valign="top" width="254">
<p align="left">Maximum Resolution
</td>
<td valign="top" width="365">
<p align="left">6000 Counts
</td>
</tr>
<tr>
<td valign="top" width="254">
<p align="left">DMM Testing Modes
</td>
<td valign="top" width="365">
<p align="left">Voltage,Current,Resistance,Capacitance,Diode & Continuity
</td>
</tr>
<tr>
<td valign="top" width="254">
<p align="left">Maximum Input Voltage
</td>
<td valign="top" width="365">
<p align="left">AC : 600V DC : 800V
</td>
</tr>
<tr>
<td valign="top" width="254">
<p align="left">Maximum Input Current
</td>
<td valign="top" width="365">
<p align="left">AC :10ADC :10A
</td>
</tr>
<tr>
<td valign="top" width="254">
<p align="left">Input Impedance
</td>
<td valign="top" width="365">
<p align="left">10MΩ
</td>
</tr>
</tbody>
</table>
<br />
<h3>Meter Specification</h3>
<table border="1" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td colspan="2" valign="top" width="309">
Range
</td>
<td valign="top" width="155">
Accuracy
</td>
<td valign="top" width="155">
Resolution
</td>
</tr>
<tr>
<td rowspan="6" valign="top" width="155">
DC Voltage
</td>
<td valign="top" width="155">
60.00mV(manual)
</td>
<td rowspan="6" valign="top" width="155">
±1%±1digit
</td>
<td valign="top" width="155">
10uV
</td>
</tr>
<tr>
<td valign="top" width="155">
600.0mV
</td>
<td valign="top" width="155">
100uV
</td>
</tr>
<tr>
<td valign="top" width="155">
6.000V
</td>
<td valign="top" width="155">
1mV
</td>
</tr>
<tr>
<td valign="top" width="155">
60.00V
</td>
<td valign="top" width="155">
10mV
</td>
</tr>
<tr>
<td valign="top" width="155">
600.0V
</td>
<td valign="top" width="155">
100mV
</td>
</tr>
<tr>
<td valign="top" width="155">
800V
</td>
<td valign="top" width="155">
1V
</td>
</tr>
<tr>
<td rowspan="5" valign="top" width="155">
AC Voltage
 
</td>
<td valign="top" width="155">
60.00mV(manual)
</td>
<td rowspan="5" valign="top" width="155">
±1%±3digit
</td>
<td valign="top" width="155">
10uV
</td>
</tr>
<tr>
<td valign="top" width="155">
600.0mV(manual)
</td>
<td valign="top" width="155">
100uV
</td>
</tr>
<tr>
<td valign="top" width="155">
6.000V
</td>
<td valign="top" width="155">
1mV
</td>
</tr>
<tr>
<td valign="top" width="155">
60.00V
</td>
<td valign="top" width="155">
10mV
</td>
</tr>
<tr>
<td valign="top" width="155">
600.0V
</td>
<td valign="top" width="155">
100mV
</td>
</tr>
<tr>
<td rowspan="4" valign="top" width="155">
DC Current
</td>
<td valign="top" width="155">
60.00mA
</td>
<td valign="top" width="155">
±1.5%±1digit
</td>
<td valign="top" width="155">
10uA
</td>
</tr>
<tr>
<td valign="top" width="155">
600.0mA
</td>
<td valign="top" width="155">
±1%±1digit
</td>
<td valign="top" width="155">
100uA
</td>
</tr>
<tr>
<td valign="top" width="155">
6.000A
</td>
<td rowspan="2" valign="top" width="155">
±1.5%±3digit
</td>
<td valign="top" width="155">
1mA
</td>
</tr>
<tr>
<td valign="top" width="155">
10.00A
</td>
<td valign="top" width="155">
10mA
</td>
</tr>
<tr>
<td rowspan="4" valign="top" width="155">
AC Current
</td>
<td valign="top" width="155">
60.00mA
</td>
<td valign="top" width="155">
±1.5%±3digit
</td>
<td valign="top" width="155">
10uA
</td>
</tr>
<tr>
<td valign="top" width="155">
600.0mA
</td>
<td valign="top" width="155">
±1%±1digit
</td>
<td valign="top" width="155">
100uA
</td>
</tr>
<tr>
<td valign="top" width="155">
6.000A
</td>
<td rowspan="2" valign="top" width="155">
±1.5%±3digit
</td>
<td valign="top" width="155">
1mA
</td>
</tr>
<tr>
<td valign="top" width="155">
10.00A
</td>
<td valign="top" width="155">
10mA
</td>
</tr>
<tr>
<td rowspan="6" valign="top" width="155">
Resistance
</td>
<td valign="top" width="155">
600.0
</td>
<td rowspan="5" valign="top" width="155">
±1%±1digit
 
</td>
<td valign="top" width="155">
0.1Ω
</td>
</tr>
<tr>
<td valign="top" width="155">
6.000K
</td>
<td valign="top" width="155">

</td>
</tr>
<tr>
<td valign="top" width="155">
60.00K
</td>
<td valign="top" width="155">
10Ω
</td>
</tr>
<tr>
<td valign="top" width="155">
600.0K
</td>
<td valign="top" width="155">
100Ω
</td>
</tr>
<tr>
<td valign="top" width="155">
6.000M
</td>
<td valign="top" width="155">
1KΩ
</td>
</tr>
<tr>
<td valign="top" width="155">
60.00M
</td>
<td valign="top" width="155">
±1.5%±3digit
</td>
<td valign="top" width="155">
10KΩ
</td>
</tr>
<tr>
<td rowspan="6" valign="top" width="155">
Capacitance
 
</td>
<td valign="top" width="155">
40.00nF
</td>
<td rowspan="5" valign="top" width="155">
±1%±1digit
</td>
<td valign="top" width="155">
10pF
</td>
</tr>
<tr>
<td valign="top" width="155">
400.0nF
</td>
<td valign="top" width="155">
100pF
</td>
</tr>
<tr>
<td valign="top" width="155">
4.000uF
</td>
<td valign="top" width="155">
1nF
</td>
</tr>
<tr>
<td valign="top" width="155">
40.00uF
</td>
<td valign="top" width="155">
10nF
</td>
</tr>
<tr>
<td valign="top" width="155">
400.0uF
</td>
<td valign="top" width="155">
100nF
</td>
</tr>
<tr>
<td colspan="3" valign="top" width="464">
Attention:The smallest capacitance value that can be measured is 5nF.
</td>
</tr>
<tr>
<td valign="top" width="155">
Diode
</td>
<td colspan="3" valign="top" width="464">
0V~2.0V
</td>
</tr>
<tr>
<td valign="top" width="155">
On-off Test
</td>
<td colspan="3" valign="top" width="464">
<p align="left">< 30Ω
</td>
</tr>
</tbody>
</table>

Be the first to review “DSO 1202B”

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *

Reviews

There are no reviews yet.

See It Styled On Instagram

    No access token

Main Menu